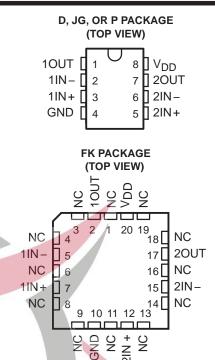
SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

- Trimmed Offset Voltage: TLC27L7 . . . 500 μV Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically
 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

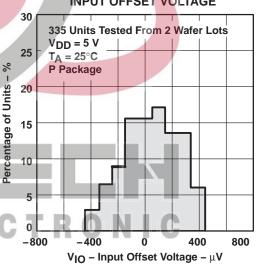
0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix Types)
- Ultra-Low Power . . . Typically 95 μW at 25°C, V_{DD} = 5 V
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up immunity


description

The TLC27L2 and TLC27L7 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, extremely low power, and high gain.

AVAILABLE OPTIONS


			PACKA	GE	
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)
0°C to 70°C	500 μV 2 mV 5 mV 10 mV	TLC27L7CD TLC27L2BCD TLC27L2ACD TLC27L2CD		-	TLC27L7CP TLC27L2BCP TLC27L2ACP TLC27L2CP
-40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC27L7ID TLC27L2BID TLC27L2AID TLC27L2ID		_	TLC27L7IP TLC27L2BIP TLC27L2AIP TLC27L2IP
-55°C to 125°C	500 μV 10 mV	TLC27L7MD TLC27L2MD TLC27L2MDRG4	TLC27L7MFK TLC27L2MFK	TLC27L7MJG TLC27L2MJG	TLC27L7MP TLC27L2MP

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC27L7CDR).

NC - No internal connection

DISTRIBUTION OF TLC27L7 INPUT OFFSET VOLTAGE

LinCMOS is a trademark of Texas Instruments.

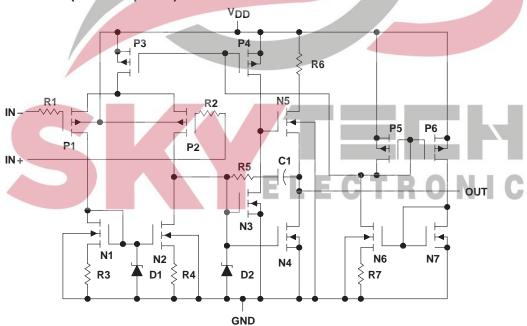
SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

description (continued)

These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and low power consumption make these cost-effective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.


A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand – 100-mA surge currents without sustaining latch-up.

The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-Suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

equivalent schematic (each amplifier)

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage (see Note 2)	±V _{DD}
Input voltage range, V _I (any input)	0.3 V to V _{DD}
Input current, I _I	±5 mA
Output current, I _O (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	Unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
M suffix	
Storage temperature range	
Case temperature for 60 seconds: FK package	, 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P packag	e 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN -.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	+
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8 mW/°C	640 mW	520 mW	_

recommended operating conditions

		A /		C SU	FFIX	I SUF	FIX	M SU	IFFIX	
				MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}				3	16	4	16	4	16	V
	$V_{DD} = 5 V$			-0.2	3.5	-0.2	3.5	0	3.5	.,
Common-mode input voltage, V _{IC}	V _{DD} = 10 V		EL	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA				0	70	-40	85	-55	125	°C

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONE	DITIONS	TAT	TLC TLC	27L2C 27L2A 27L2B 27L7C TYP	C C	UNIT
			V _O = 1.4 V,	V10 - 0	25°C	IVIIIV	1.1	10	
		TLC27L2C	VO = 1.4 V, $RS = 50 \Omega,$	$V_{IC} = 0$, $R_L = 1 M\Omega$	Full range		••••	12	
			V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
		TLC27L2AC	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			6.5	
VIO	Input offset voltage		V _O = 1.4 V,	V _{IC} = 0,	25°C		204	2000	
		TLC27L2BC	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			3000	
		TI 0071 70	V _O = 1.4 V,	V _{IC} = 0,	25°C		170	500	μV
		TLC27L7C	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			1500	
αΛΙΟ	Average temperature coeff offset voltage	icient of input			25°C to 70°C		1.1		μV/°C
	1		V 05V	V 25V	25°C		0.1	60	
lio	Input offset current (see No	ote 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 \text{ V}$	70°C		7	300	pA
	lanut higa ayyant (asa Nat	. (1)	V- 05V	V 25V	25°C		0.6	60	^
I _{IB}	Input bias current (see Not	e 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	70°C		50	600	рA
	Common-mode input volta	ge range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)				Full range	-0.2 to 3.5			V
					25°C	3.2	4.1		
VOH	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 1 M\Omega$	0°C	3	4.1		V
					70°C	3	4.2		
					25°C		0	50	
VOL	Low-level output voltage		$V_{1D} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
	Large-signal differential vol	tane			25°C	50	700		
AVD	amplification	lage	$V_O = 0.25 \text{ V to 2 V},$	$R_L = 1 M\Omega$	0°C	50	700		V/mV
					70°C	50	380		
					25°C	65	94		
CMRR	Common-mode rejection ra	atio	V _{IC} = V _{ICR} min	LEO	0°C	60	95		dB
<u> </u>				LEU	70°C	60	95		
l.	Supply-voltage rejection ra	tio			25°C	70	97		
ksvr	$(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	0°C	60	97		dB
<u> </u>					70°C	60	98	24	
los	Supply current (two amplifi	ore)	V _O = 2.5 V,	$V_{IC} = 2.5 V$,	25°C 0°C		24	34 42	^
IDD	Зарріу сапені (two атріпі	c13)	No load		70°C		16	28	μΑ
+ - "	ne is 0°C to 70°C		<u> </u>		700		10	20	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V (unless otherwise noted)

	PARAMETER		TEST COND	DITIONS	T _A †	TL(C27L2C C27L2A C27L2B C27L7C	С	UNIT
						MIN	TYP	MAX	
		TLC27L2C	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		1.1	10	
		12027220	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			12	mV
		TLC27L2AC	$V_0 = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		0.9	5	
VIO	Input offset voltage	1202722710	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			6.5	
1.10	par ooor ronago	TLC27L2BC	$V_0 = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		235	2000	
			$R_S = 50 \Omega$,	R _L = 1 MΩ	Full range			3000	μV
		TLC27L7C	$V_0 = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		190	800	
			$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			1900	
αΝΙΟ	Average temperature co offset voltage	efficient of input			25°C to 70°C		1		μV/°C
lio.	Input offset current (see	Note 4)	V _O = 5 V,	V _{IC} = 5 V	25°C		0.1	60	pА
IIO	input onset current (see	Note 4)	V() = 5 V,	VIC = 3 V	70°C		8	300	pΑ
l.o	Input bias current (see N	loto (1)	V _O = 5 V,	V _{IC} = 5 V	25°C		0.7	60	pА
I _{IB}	input bias current (see it	10(6 4)	V() = 3 V,	ΔIC = 2 A	70°C		50	600	рA
	Common-mode input vo	tage range			25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	(see Note 5)			47	Full range	-0.2 to 8.5			V
					25°C	8	8.9		
Vон	High-level output voltage		$V_{1D} = 100 \text{ mV},$	$R_L = 1 M\Omega$	0°C	7.8	8.9		V
					70°C	7.8	8.9		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	50	860		
A _{VD}	Large-signal differential amplification	voltage	$V_0 = 1 \text{ V to 6 V,}$	$R_L = 1 M\Omega$	0°C	50	1025		V/mV
	amplification				70°C	50	660		
					25°C	65	97		
CMRR	Common-mode rejection	ratio	V _{IC} = V _{ICR} min		0°C	60	97		dB
				ECT	70°C	60	97		
					25°C	70	97		
ksvr	Supply-voltage rejection (ΔV _{DD} /ΔV _{IO})	ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	97		dB
	(\(\times \mathbb{U} \				70°C	60	98		
					25°C		29	46	
IDD	Supply current (two amp	lifiers)	V _O = 5 V, No load	$V_{IC} = 5 V$	0°C		36	66	μΑ
			110 1000		70°C		22	40	

[†] Full range is 0°C to 70°C.

NOTES: 4 The typical values of input bias current and input offset current below 5 pA were determined mathematically.

⁵ This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TLC TLC	27L2I 27L2A 27L2B 27L7I	I	UNIT
		1		., .	25°C	MIN	TYP 1.1	MAX 10	
		TLC27L2I	$V_{O} = 1.4 \text{ V},$ RS = 50 Ω ,	$V_{IC} = 0$, $R_L = 1 M\Omega$	Full range		1.1	13	
					25°C		0.9	5	mV
		TLC27L2AI	$V_{O} = 1.4 \text{ V},$ R _S = 50 \Omega,	$V_{IC} = 0$, $R_{I} = 1 M\Omega$	Full range		0.9	7	
VIO	Input offset voltage		V _O = 1.4 V,	V _{IC} = 0,	25°C		240	2000	
		TLC27L2BI	$R_S = 50 \Omega$	$R_L = 1 M\Omega$	Full range			3500	
			V _O = 1.4 V,	V _{IC} = 0,	25°C		170	500	μV
		TLC27L7I	$R_S = 50 \Omega$	$R_L = 1 M\Omega$	Full range			2000	
αΝΙΟ	Average temperature coe	efficient of			25°C to 85°C		1.1		μV/°C
					25°C		0.1	60	
liO	Input offset current (see I	Note 4)	$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 \text{ V}$	85°C		24	1000	рA
					25°C		0.6	60	
I _{IB}	Input bias current (see No	ote 4)	$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$	85°C		200	2000	pA
	Common-mode input volt	age range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)				Full range	-0.2 to 3.5			V
					25°C	3.2	4.1		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 1 M\Omega$	-40°C	3	4.1		V
					85°C	3	4.2		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
	Large-signal differential				25°C	50	480		
AVD	voltage amplification	7	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 1 M\Omega$	-40°C	50	900		V/mV
					85°C	50	330	-	
					25°C	65	94		
CMRR	Common-mode rejection	ratio	V _{IC} = V _{ICR} min	LEO	-40°C	60	95		dB
				LLEU	85°C	60	95	U	
l.	Supply-voltage rejection	ratio			25°C	70	97		
ksvr	(ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	97		dB
					85°C	60	98	0.4	
 	Committee accommissed the control	::::::::::::::::::::::::::::::::::::::	V _O = 2.5 V,	$V_{IC} = 2.5 V$,	25°C		20	34	4
IDD	Supply current (two ampl	mers)	No load	,	-40°C		31	54	μΑ
<u> </u>	ao ic 40°C to 85°C				85°C		15	26	

[†]Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TL(C27L2I C27L2A C27L2B C27L7I TYP		UNIT
			V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC27L2I	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			13	
		TLC27L2AI	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 1 \text{ M}\Omega$	25°C		0.9	5	mV
VIO	Input offset voltage				Full range		005	7	
		TLC27L2BI	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 1 M\Omega$	25°C		235	2000	
					Full range	7	190	3500 800	μV
		TLC27L7I	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 1 M\Omega$	Full range		190	2900	
αΛΙΟ	Average temperature coeffice offset voltage	cient of input			25°C to 85°C		1		μV/°C
		0	v 5v	V = 1/	25°C		0.1	60	•
lio	Input offset current (see No	te 4)	$V_0 = 5 V$,	$V_{IC} = 5 V$	85°C		26	1000	pA
	Land him a way of the a Nata	4	V 5V		25°C		0.7	60	^
IB	Input bias current (see Note	(4)	V _O = 5 V,	V _{IC} = 5 V	85°C		220	2000	pA
	Common-mode input voltag	e range			25°C	-0.2 to 9	-0.3 to 9.2		٧
VICR	(see Note 5)				Full range	-0.2 to 8.5			٧
					25°C	8	8.9		
VOH	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 1 M\Omega$	-40°C	7.8	8.9		V
					85°C	7.8	8.9		
					25°C		0	50	
V_{OL}	Low-level output voltage		$V_{1D} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
	1 1 - 1 - 1 - 1 - 1 - 1 - 1 -				25°C	50	860		
AVD	Large-signal differential volt amplification	age	$V_{O} = 1 \text{ V to 6 V,}$	$R_L = 1 M\Omega$	-40°C	50	1550		V/mV
	апринован				85°C	50	585		
					25°C	65	97		
CMRR	Common-mode rejection ra	tio	$V_{IC} = V_{ICR}min$		-40°C	60	97		dB
			EL	ECI	85°C	60	98		
	Complements of the Complement				25°C	70	97		
ksvr	Supply-voltage rejection rat (ΔVDD/ΔVIO)	0	$V_{DD} = 5 V \text{ to } 10 V,$	$V_0 = 1.4 \text{ V}$	-40°C	60	97		dB
	(= · IU/ = · IU/				85°C	60	98		
			., 5.,		25°C		29	46	
IDD	Supply current (two amplifie	ers)	V _O = 5 V, No load	$V_{IC} = 5 V$,	−40°C		49	86	μΑ
					85°C		20	36	

[†]Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 5 V (unless otherwise noted)

	PARAMETER		TEST CONE	DITIONS	T _A †		.C27L2N .C27L7N		UNIT
						MIN	TYP	MAX	
		TLC27L2M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
V	Input offset voltage	TLC27L2IVI	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			12	IIIV
VIO	input onset voltage	TLC27L7M	V _O = 1.4 V,	V _{IC} = 0,	25°C		170	500	\/
		TLC27L7M	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			3750	μV
αΝΙΟ	Average temperature of input offset voltage	oefficient of			25°C to 125°C		1.4		μV/°C
l. a	Innut affact ourrent (ac	a Nata 4\	V- 25V	V:- 2.5.V	25°C		0.1	60	рА
110	Input offset current (se	e Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	125°C		1.4	15	nA
1	Input high sturrent (see	Note 4)	V- OFV	V 25V	25°C		0.6	60	рА
IIB	Input bias current (see	Note 4)	$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$	125°C		9	35	nA
VICR	Common-mode input v	oltage range			25°C	0 to 4	-0.3 to 4.2		V
IOIX	(see Note 5)				Full range	0 to 3.5			V
					25°C	3.2	4.1		
VOH	High-level output voltage	ge	$V_{ID} = 100 \text{ mV},$	$R_L = 1 M\Omega$	−55°C	3	4.1		V
					125°C	3	4.2		
					25°C		0	50	
VOL	Low-level output voltag	je l	$V_{ID} = -100 \text{ mV},$	IOT = 0	-55°C	/	0	50	mV
					125°C		0	50	
	Large-signal differentia	Lvoltage			25°C	50	500		
AVD	amplification	rollago	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 1 M\Omega$	-55°C	25	1000		V/mV
					125°C	25	200		
					25°C	65	94		
CMRR	Common-mode rejection	on ratio	VIC = VICRmin		−55°C	60	95		dB
					125°C	60	85		
	Supply-voltage rejection	n ratio			25°C	70	97		
^k SVR	(ΔVDD/ΔVIO)	mano	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	97		dB
	, 55 10/				125°C	60	98		
		7	V _O = 2.5 V,	V _{IC} = 2.5 V,	25°C		20	34	
IDD	Supply current (two am	plifiers)	VO = 2.5 V, No load	vIC = 2.5 v,	−55°C 125°C		35 14	60 24	μΑ
+- "	no in _FE°C to 12F°C								

† Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V (unless otherwise noted)

No		PARAMETER		TEST CONI	DITIONS	T _A †		_C27L2N _C27L7N		UNIT
Vio Input offset voltage TLC27L2M RS = 50 Ω RL = 1 MΩ Full range T2 mV TLC27L7M VO = 1.4 V RS = 50 Ω RL = 1 MΩ Full range T2 mV TLC27L7M VO = 1.4 V RS = 50 Ω RL = 1 MΩ Evil range T2 mV TLC27L7M VO = 1.4 V RS = 50 Ω RL = 1 MΩ Evil range T2 mV TLC27L7M VO = 1.4 V VIC = 0 T25°C T90 mV Average temperature coefficient of input offset voltage T2 mV TLC27L7M VO = 1.4 V VIC = 0 T25°C T10 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VO = 5 V VIC = 5 V T25°C T1.4 mV TLC27L7M VIC = 5 V T1.4 mV TLC27L2M T1.4 mV T1.4 mV TLC27L2M T1							MIN	TYP	MAX	
$V_{ O } = \frac{R_S = 50 \Omega_c}{TLC27L7M} = \frac{R_S = 50 \Omega_c}{R_S = 50 \Omega_c} = \frac{R_S = 1 M\Omega_c}{R_S = 50 \Omega_c} = \frac{Full range}{SFUll range} = \frac{12}{4300} = \frac{12}{MV} = \frac{12}$			TI COZI OM	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	\/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\/	Input offset voltage	TLC2/L2IVI	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			12	IIIV
R _S = 50 Ω, R _L = 1 MΩ Full range 4300 Full range 4	VIO	input onset voltage	TI COZI ZM	V _O = 1.4 V,	V _{IC} = 0,	25°C		190	800	\/
Input offset voltage 125°C 1.4			TLG27L7W	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			4300	μν
Input offset current (see Note 4)	αΝΙΟ		efficient of					1.4		μV/°C
Input bias current (see Note 4) V _O = 5 V, V _{IC} = 5 V 25°C 0.7 60 pA	li o	Input offset ourrest (see	Note 4)	Vo - 5 V	\/.o - 5 \/	25°C		0.1	60	pA
Input bias current (see Note 4)	110	input onset current (see	Note 4)	ν() = 5 v,	∧IC = 2 ∧	125°C		1.8	15	nA
VICR Common-mode input voltage range (see Note 5) Vont High-level output voltage ViD = 100 mV, RL = 1 MΩ ViD = 100 mV	l.a	Input hige current (see N	loto 4)	Vo = 5 V	V:0 = 5 V	25°C	//	0.7	60	pА
VICR Common-mode input voltage range (see Note 5) 25°C to to to 9 9.2 V VOH High-level output voltage VID = 100 mV, RL = 1 MΩ 25°C 8 8.9 V VOL Low-level output voltage VID = -100 mV, IQL = 0 IQL = 0 -55°C 7.8 8.8 V AVD Large-signal differential voltage amplification VID = -100 mV, IQL = 0 IQL = 0 25°C 50 860 V/mV AVD Large-signal differential voltage amplification VO = 1 V to 6 V, RL = 1 MΩ 25°C 50 860 V/mV CMRR Common-mode rejection ratio VIC = VICRmin -55°C 65 97 dB kSVR Supply-voltage rejection ratio (ΔVDD/ΔVIQ) VDD = 5 V to 10 V, VO = 1.4 V -55°C 60 97 dB IDD Supply current (two amplifiers) VO = 5 V, No load VIC = 5 V, Solve - 55°C 29 46 AB	ПВ	input bias current (see N	lote 4)	VO = 3 V,	AIC = 2 A	125°C		10	35	nA
Vocation							0	-0.3		
Vocation						25°C				V
$V_{OH} \text{High-level output voltage} \begin{array}{c} V_{ID} = 100 \text{ mV}, R_L = 1 \text{ M}\Omega \\ \hline V_{ID} = 100 \text{ mV}, R_L = 1 \text{ M}\Omega \\ \hline V_{OL} \text{Low-level output voltage} \\ \hline V_{ID} = -100 \text{ mV}, I_{OL} = 0 \\ \hline V_$	VICR	· · · · · · · · · · · · · · · · · · ·	tage range					9.2		
$V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 1 \text{M}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} \\ -55^{\circ}\text{C} \\ 7.8 \\ 9 \\ 25^{\circ}\text{C} \\ 7.8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ $	1011	(see Note 5)				F. II				
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 1 \text{M}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} & 8 & 8.9 \\ -55^{\circ}\text{C} & 7.8 & 8.8 \\ 125^{\circ}\text{C} & 7.8 & 9 \\ \hline \\ 25^{\circ}\text{C} & 0 & 50 \\ \hline \\ 125^{\circ}\text{C} & 50 & 860 \\ \hline \\ 25^{\circ}\text{C} & 50 & 860 \\ \hline \\ 25^{\circ}\text{C} & 50 & 860 \\ \hline \\ 25^{\circ}\text{C} & 50 & 860 \\ \hline \\ 125^{\circ}\text{C} & 25 & 1750 \\ \hline \\ 125^{\circ}\text{C} & 25 & 380 \\ \hline \\ CMRR \text{Common-mode rejection ratio} \\ \hline \\ K_{SVR} \begin{array}{c} V_{IC} = V_{ICRmin} \\ \hline \\ V_{DD} = 5 V \text{to 10 V}, V_{O} = 1.4 V \\ \hline \\ V_{DD} = 5 V \text{to 10 V}, V_{O} = 1.4 V \\ \hline \\ V_{IC} = 5^{\circ}\text{C}, 0 & 97 \\ \hline \\ 125^{\circ}\text{C} & 60 & 97 \\ \hline \\ 125^{\circ}\text{C} & 60 & 97 \\ \hline \\ 46 \\ \hline \\ 125^{\circ}\text{C} & 60 & 98 \\ \hline \\ 125^{\circ}\text{C} & 60 & 98 \\ \hline \\ I_{DD} \text{Supply current (two amplifiers)} \\ \hline \\ V_{O} = 5 V, V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 & 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5 V, -55^{\circ}\text{C} & 56 96 \\ \hline \\ V_{IC} = 5$						Full range				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		8.9		
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 25^{\circ}\text{C} & 7.8 & 9 \\ \hline 25^{\circ}\text{C} & 0 & 50 \\ \hline -55^{\circ}\text{C} & 0 & 50 \\ \hline 125^{\circ}\text{C} & 0 & 50 \\ \hline 125^{\circ}\text{C} & 0 & 50 \\ \hline 125^{\circ}\text{C} & 0 & 50 \\ \hline \end{array} \qquad \text{mV}$ $A_{VD} \begin{array}{c} \text{Large-signal differential voltage} \\ \text{amplification} \end{array} \qquad V_{O} = 1 \text{V to 6 V}, \begin{array}{c} \text{R}_{L} = 1 \text{M}\Omega \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 55 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 55 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 380 \text{M} \\ \hline \end{array} \qquad \begin{array}{c} \text{V/mV} \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 65 \text{97} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{CMRR} \text{Common-mode rejection ratio} \\ \text{V}_{D} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ \hline \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 70 \text{97} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{Low-level output voltage} \\ \text{V}_{D} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ \hline \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 70 \text{97} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \text{DD} \end{array} \qquad \begin{array}{c} \text{Supply current (two amplifiers)} \end{array} \qquad \begin{array}{c} \text{V}_{O} = 5 \text{V}, \text{V}_{IC} = 5 \text{V}, -55^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 55^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 55 \text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} \\ \hline \end{array} \qquad \begin{array}{c} 60 \text{98} \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \end{array} \qquad \begin{array}{c$	Vou	High-level output voltage		Vip = 100 mV	Ri – 1 MO					V
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOH	riigiriever output voitage		VID = 100 IIIV,	ICE - 1 IVISZ					v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									50	
	VOL	I ow-level output voltage		$V_{ID} = -100 \text{ mV}.$	lor = 0	_55°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I OL			10,	-OL	125°C		0	50	
AVD amplification $V_{O} = 1 \text{ V to 6 V}, R_{L} = 1 \text{ M}\Omega$ $\frac{-53 \text{ °C}}{125 \text{ °C}} = \frac{25 \text{ 1750}}{380}$ V/mV $\frac{125 \text{ °C}}{125 \text{ °C}} = \frac{25 \text{ 380}}{380}$ CMRR Common-mode rejection ratio $V_{IC} = V_{ICRmin}$ $\frac{-55 \text{ °C}}{-55 \text{ °C}} = \frac{60 \text{ 97}}{60 \text{ 91}}$ dB $\frac{125 \text{ °C}}{125 \text{ °C}} = \frac{60 \text{ 97}}{60 \text{ 91}}$ dB $\frac{25 \text{ °C}}{125 \text{ °C}} = \frac{70 \text{ 97}}{60 \text{ 97}}$ dB $\frac{125 \text{ °C}}{125 \text{ °C}} = \frac{60 \text{ 97}}{60 \text{ 98}}$ dB $\frac{125 \text{ °C}}{125 \text{ °C}} = \frac{60 \text{ 98}}{60 \text{ 98}}$ lpd $\frac{125 \text{ °C}}{125 \text{ °C}} = \frac{25 \text{ °C}}{125 \text{ °C}$						25°C	50	860		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD	0 0	voltage	$V_{O} = 1 \text{ V to 6 V},$	$R_{I} = 1 M\Omega$	−55°C	25	1750		V/mV
CMRR Common-mode rejection ratio $V_{IC} = V_{ICR} min$ $-55^{\circ}C$ 60 97 dB $125^{\circ}C$ 60 91 $125^{\circ}C$ 60 91 $25^{\circ}C$ 70 97 $125^{\circ}C$ 60 91 $125^{\circ}C$ 60 91 $125^{\circ}C$ 60 97 $125^{\circ}C$ 60 97 $125^{\circ}C$ 60 97 $125^{\circ}C$ 60 97 $125^{\circ}C$ 60 98 $125^{\circ}C$ 60 98 $125^{\circ}C$ 60 98 $125^{\circ}C$ 125°	'	amplification			_	125°C	25	380		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	97		
	CMRR	Common-mode rejection	ratio	V _{IC} = V _{ICR} min		−55°C	60	97		dB
kSVR Supply-voltage rejection ratio (ΔVDD/ΔVIO) VDD = 5 V to 10 V, VO = 1.4 V -55° C 60 97 dB IDD Supply current (two amplifiers) VO = 5 V, No load VIC = 5 V, No load -55° C 29 46						125°C	60	91		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Owner by could				25°C	70	97		
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V}$ $V_{IC} =$	ksvr		ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	97		dB
$V_{O} = 5 V$, $V_{IC} = 5 V$		(4,00,4,10)				125°C	60	98		
No load				V. EV	V - 5 V	25°C		29	46	
125°C 18 30	IDD	Supply current (two amp	lifiers)		VIC = 5 V,	-55°C		56	96	μΑ
				145 1044		125°C		18	30	

[†] Full range is -55 °C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TL TL	C27L2C C27L2A C27L2B C27L7C	C C	UNIT
					MIN	TYP	MAX	
				25°C		0.03		
			V _{I(PP)} = 1 V	0°C		0.04		
CD.	Class note at switz main	$R_L = 1 M\Omega$,		70°C		0.03		Miss
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		0.03		V/μs
		l	V _{I(PP)} = 2.5 V	0°C		0.03		
			,	70°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,		0°C	7	6		kHz
		17 = 1 17152,	See Figure 1	70°C		4.5		
				25°C		85		
В1	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$,	0°C		100		kHz
•		See Figure 3		70°C		65		
				25°C		34°		
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C		36°		
		ο _L = 20 μι,	oce rigule 3	70°C		30°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	ТА	TLC27L2C TLC27L2AC TLC27L2BC TLC27L7C	UNIT
					MIN TYP MAX	
				25°C	0.05	
			$V_{I(PP)} = 1 V$	0°C	0.05]
	Clausesta at switz main	$R_L = 1 M\Omega$,		70°C	0.04	Miss
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	0.04	V/μs
			V _{I(PP)} = 5.5 V	0°C	0.05]
				70°C	0.04	1 1
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	O N 68 C	nV/√ Hz
				25°C	1	
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF, See Figure 1	0°C	1.3	kHz
		KL = 1 10152,	See Figure 1	70°C	0.9	1 1
				25°C	110	
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C	125	kHz
		guio o		70°C	90]
		.,,		25°C	38°	
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$		0°C	40°]
		OL = 20 pr ,	occ rigure 3	70°C	34°	

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TL TL TL	UNIT			
					MIN	TYP	MAX		
				25°C		0.03			
			V _{I(PP)} = 1 V	−40°C		0.04			
CD.	Claus note at social	$R_L = 1 M\Omega$,	, ,	85°C		0.03		\//a	
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		0.03		V/μs	
		3	V _{I(PP)} = 2.5 V	−40°C		0.04			
			, ,	85°C		0.02			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz	
				25°C		5			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF, See Figure 1	-40°C		7		kHz	
		TC_ = 1 10132,	occ rigare r	85°C		4			
		V 12 V		25°C		85			
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C		130		kHz	
		occ rigare o		85°C		55			
				25°C		34°			
φm	Phase margin	$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF},$	f = B ₁ , See Figure 3	-40°C		38°			
		OL - 20 pr;	occ rigare o	85°C		29°			

operating characteristics, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	ТА	TLC27L2I TLC27L2AI TLC27L2BI TLC27L7I MIN TYP MAX	UNIT	
				25°C	0.05		
		$R_L = 1 M\Omega$,	V _{I(PP)} = 1 V	−40°C	0.06		
SR	Slew rate at unity gain	$C_L = 20 \text{ pF},$		85°C	0.03	V/μs	
		See Figure 1		25°C	0.04	Ι .,μο	
			$V_{I(PP)} = 5.5 V$	-40°C	0.05		
				85°C	0.03		
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	68	nV/√ Hz	
			_	25°C	1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 1 M\Omega$,	$C_L = 20 pF$, See Figure 1	−40°C	1.4	kHz	
		TKL = 1 10152,	See Figure 1	85°C	0.8	1	
				25°C	110		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−40°C	155	kHz	
		Gee rigure o		85°C	80		
		., .,	, 5	25°C	38°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−40°C	42°]	
		OL - 20 pr ,		85°C	32°		

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TL(UNIT			
					MIN	TYP	MAX		
				25°C		0.03			
			V _{I(PP)} = 1 V	−55°C	0.04				
	Oleverate at with male	$R_L = 1 M\Omega$,	, ,	125°C		0.02		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		0.03		V/μs	
		Goo'r igaro'r	V _{I(PP)} = 2.5 V	−55°C		0.04			
				125°C		0.02			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$	25°C		68		nV/√ Hz	
			C _L = 20 pF, See Figure 1	25°C		5			
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 1 M\Omega$,		-55°C		8		kHz	
		11 - 1 10152,	occ rigure 1	125°C		3			
		.,,		25°C		85			
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		140		kHz	
		Occ Figure 5		125°C		45		<u> </u>	
		W	,	25°C		34°			
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−55°C		39°			
		ο <u>Γ</u> = 20 μι,	occ rigure o	125°C		25°	•		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC27L2M TLC27L7M	UNIT
					MIN TYP MAX	
				25°C	0.05	
			$V_{I(PP)} = 1 V$	−55°C	0.06]
SR	Slow rate at unity gain	$R_L = 1 M\Omega$,		125°C	0.03	\//uo
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C	0.04	V/μs
		Odd Tiguro T	V _{I(PP)} = 5.5 V	−55°C	0.06	
				125°C	0.03	
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	68	nV/√ Hz
	Maximum output-swing bandwidth		C _L = 20 pF, See Figure 1	25°C	1	
Вом		$V_O = V_{OH}$, $R_L = 1 M\Omega$,		−55°C	1.5	kHz
			occ rigate i	125°C	0.7	
		V 40 V	0 00 5	25°C	110	
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C	165	kHz
		occ riguic s		125°C	70	
		., .,	, 5	25°C	38°	
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−55°C	43°	
		оц = 20 рг,		125°C	29°	

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC27L2 and TLC27L7 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown in Figure 1. The use of either circuit gives the same result.

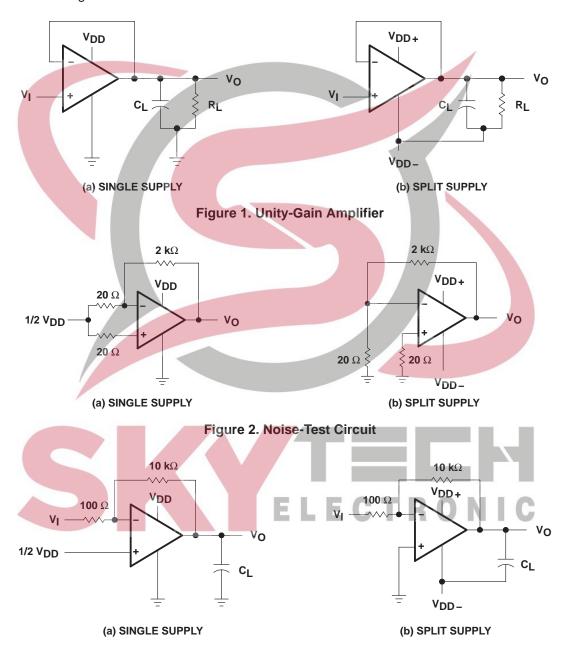


Figure 3. Gain-of-100 Inverting Amplifier

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC27L2 and TLC27L7 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

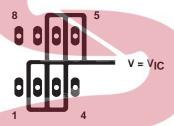


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figure 14 through Figure 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

ELECTRONIC

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (see Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

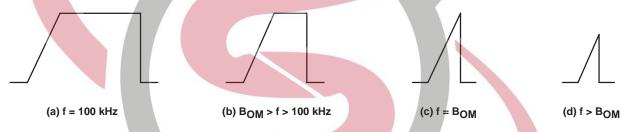


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
VOH	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Differential input voltage vs Free-air temperature vs Low-level output current	14,16 15,17 18, 19
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
llO	Input offset current	vs Free-air temperature	22
V _{IC}	Common-mode input voltage	vs Supply voltage	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequ <mark>ency</mark>	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Capacitive Load	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TYPICAL CHARACTERISTICS

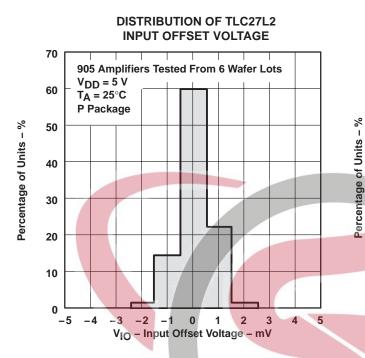


Figure 6

DISTRIBUTION OF TLC27LC AND TLC27L7

INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 70 356 Amplifiers Tested From 8 Wafer Lots $V_{DD} = 5 V$ 60 $T_A = 25^{\circ}C$ to $125^{\circ}C$ P Package **Outliers:** Percentage of Units - % 50 (1) 19.2 μV/°C (1) 12.1 μV/°C 40 30 20 10 -10 -8 -6 -4 -2 0 2 αVIO - Temperature Coefficient - μV/°C

Figure 8

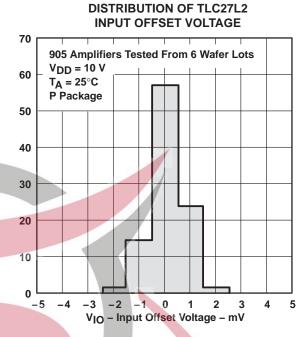


Figure 7

DISTRIBUTION OF TLC27LC AND TLC27L7 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

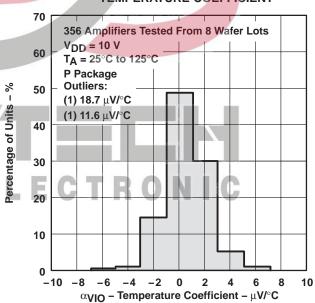
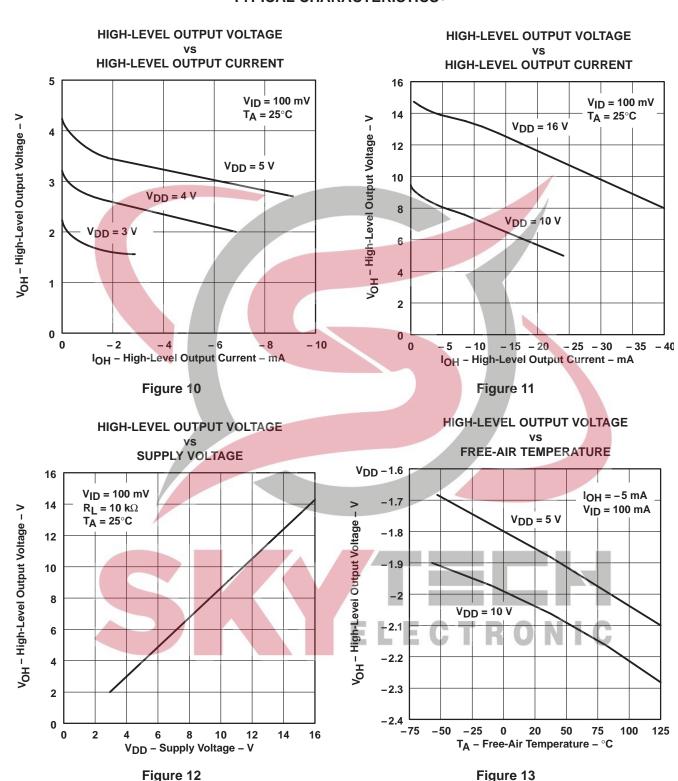
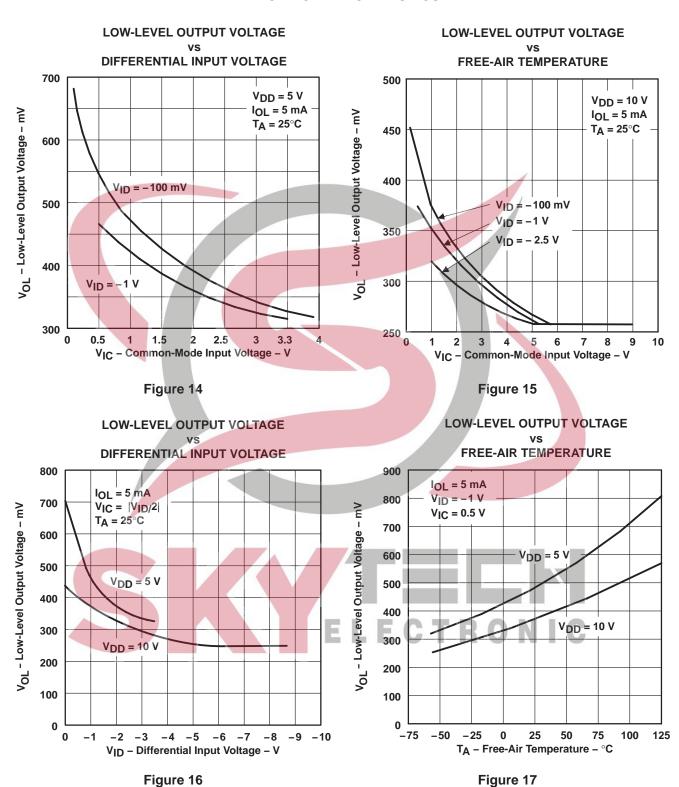
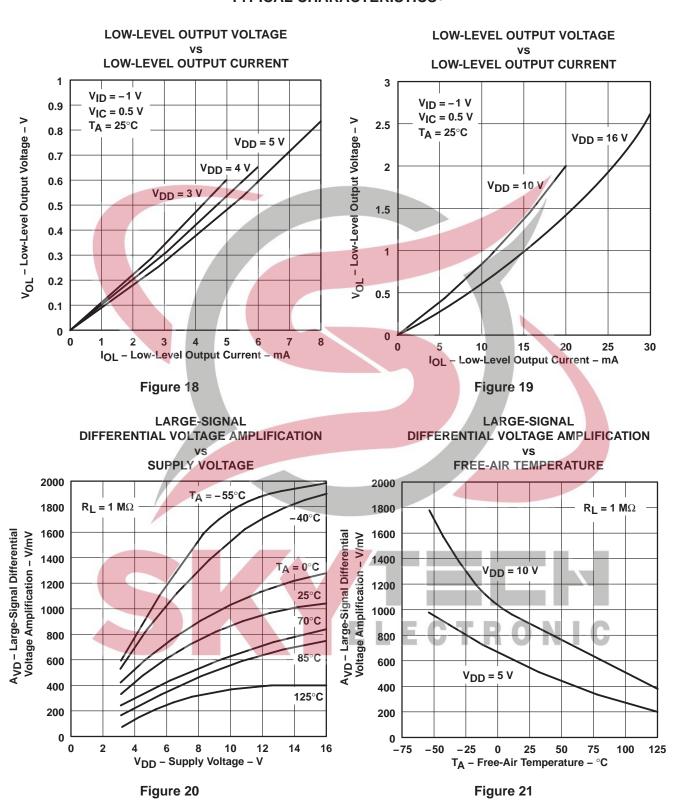




Figure 9


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT FREE-AIR TEMPERATURE 10000 $V_{DD} = 10 V$ V_{IC} = 5 V See Note A 1000 lιΒ 100 10 10

IB and I_{IO} - Input Bias and Offset Currents - pA

1

0.1

25

0 0

2

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

65

85

- Free-Air Temperature -

105

125

Figure 22 SUPPLY CURRENT SUPPLY VOLTAGE 90 $T_A = -55^{\circ}C$ $V_O = V_{DD}/2$ 80 No Load 70 IDD - Supply Current - µA -40°C 60 50 0°C 40 25°C 30 70°C 20 125°C 10

V_{DD} – Supply Voltage – V Figure 24

8

10

12

14

COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT

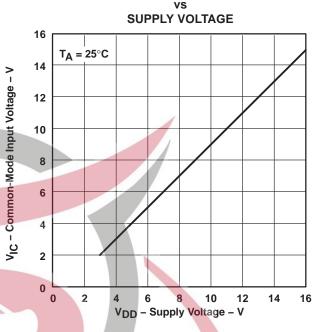
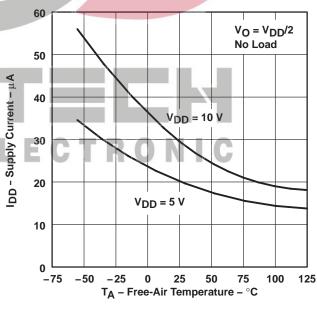
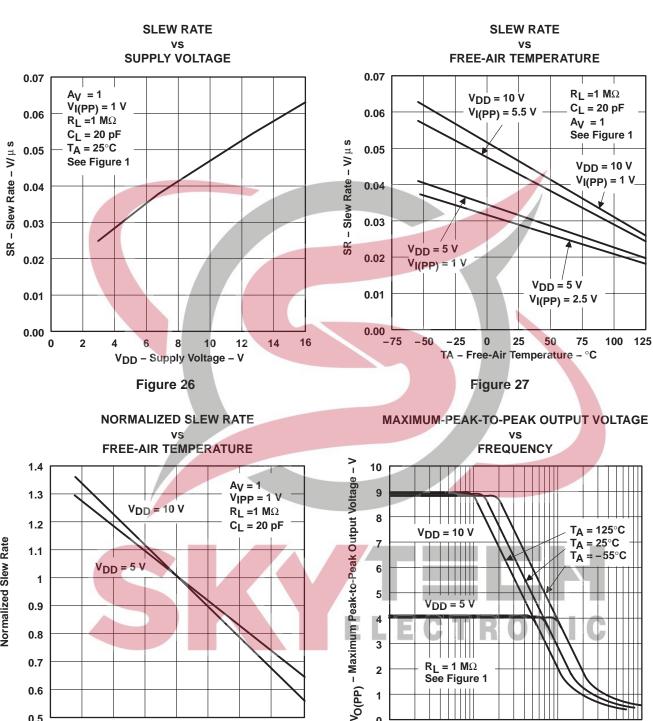
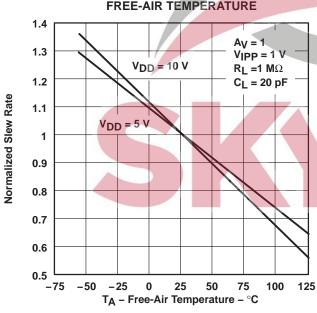


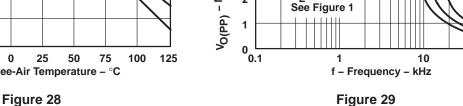
Figure 23

SUPPLY CURRENT

FREE-AIR TEMPERATURE


Figure 25


† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

16

5

3

2

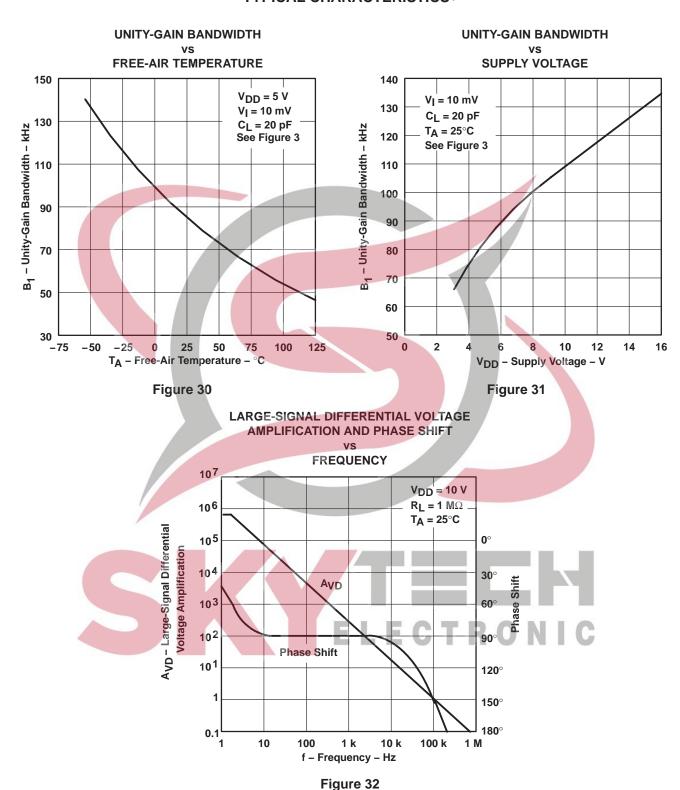

 $R_L = 1 M\Omega$

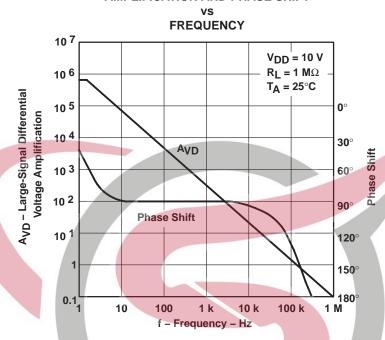
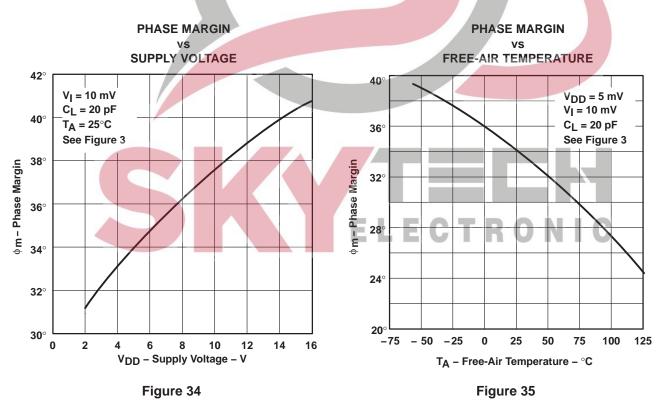
Figure 29

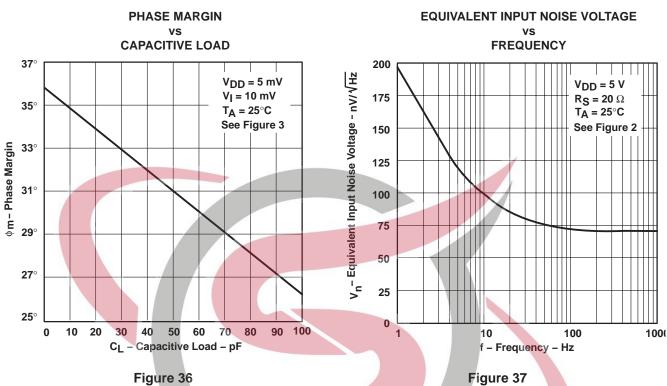
100

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT


Figure 33

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

single-supply operation

While the TLC27L2 and TLC27L7 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC27L2 and TLC27L7 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC27L2 and TLC27L7 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

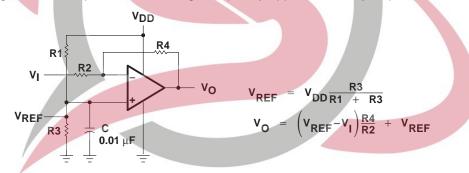


Figure 38. Inverting Amplifier With Voltage Reference

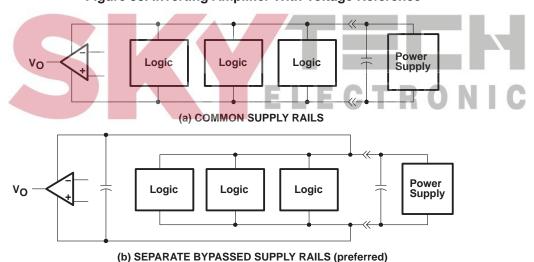


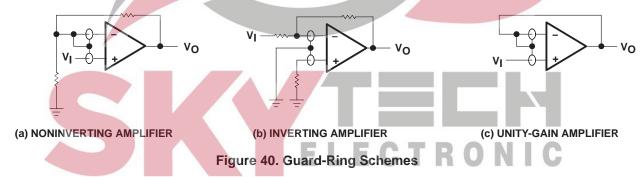
Figure 39. Common Versus Separate Supply Rails

SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

APPLICATION INFORMATION

input characteristics

The TLC27L2 and TLC27L7 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at V_{DD} –1 V at T_A = 25°C and at V_{DD} –1.5 V at all other temperatures.


The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L2 and TLC27L7 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L2 and TLC27L7 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the *Parameter Measurement Information* section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

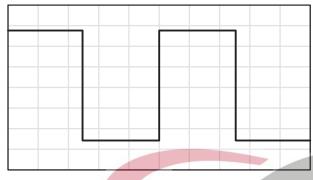
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

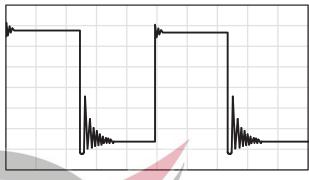
noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC27L2 and TLC27L7 result in a low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

output characteristics

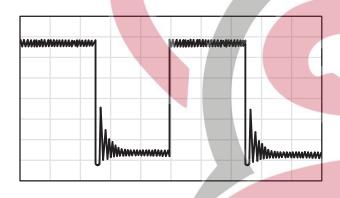
The output stage of the TLC27L2 and TLC27L7 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.


All operating characteristics of the TLC27L2 and TLC27L7 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.



SLOS052D - OCTOBER 1987 - REVISED OCTOBER 2005

APPLICATION INFORMATION


output characteristics (continued)

(a) $C_L = 20 pF$, $R_L = NO LOAD$

(c) $C_L = 310 \text{ pF}, R_L = NO \text{ LOAD}$

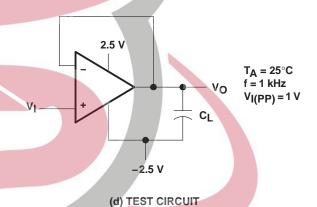


Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC27L2 and TLC27L7 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of Rp, a voltage offset from 0 V at the output occurs. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

output characteristics (continued)

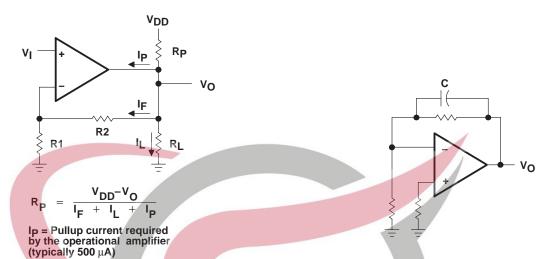


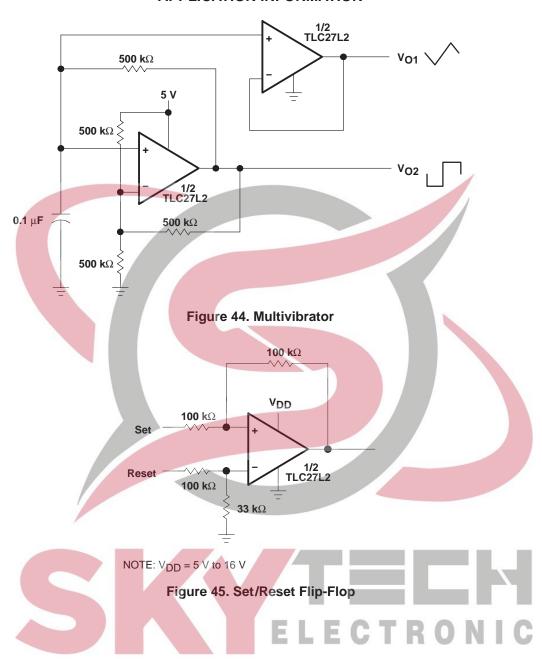
Figure 42. Resistive Pullup to Increase VOH

Figure 43. Compensation for Input Capacitance

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection


The TLC27L2 and TLC27L7 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L2 and TLC27L7 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

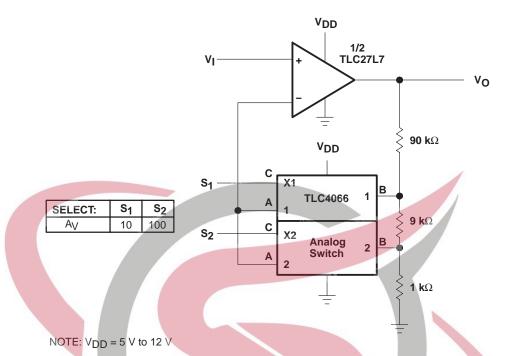
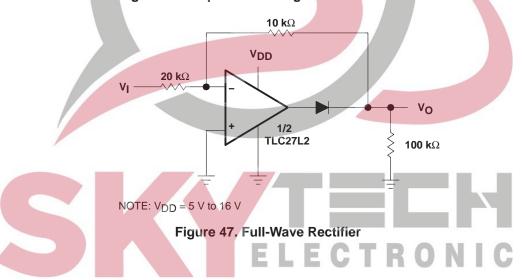
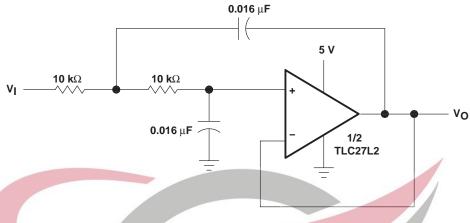




Figure 46. Amplifier With Digital Gain Selection

NOTE: Normalized to $f_C = 1$ kHz and $R_L = 10$ k Ω

Figure 48. Two-Pole Low-Pass Butterworth Filter

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC27L2ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2AC	Samples
TLC27L2ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2AC	Samples
TLC27L2ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2AC	Samples
TLC27L2ACP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	TLC27L2AC	Samples
TLC27L2AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2AI	Samples
TLC27L2AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2AI	Samples
TLC27L2AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2AI	Samples
TLC27L2AIP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	TLC27L2AI	Samples
TLC27L2BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2BC	Samples
TLC27L2BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2BC	Samples
TLC27L2BCDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2BC	Samples
TLC27L2BCP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU E L E C	N / A for Pkg Type	0 to 70	TLC27L2BC	Samples
TLC27L2BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2BI	Samples
TLC27L2BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2BI	Samples
TLC27L2BIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2BI	Samples
TLC27L2BIP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	TLC27L2BI	Samples
TLC27L2CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2C	Samples

www.ti.com

6-Feb-2020

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC27L2CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2C	Samples
TLC27L2CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L2C	Samples
TLC27L2CP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	TLC27L2CP	Samples
TLC27L2CPE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	TLC27L2CP	Samples
TLC27L2CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	P27L2	Samples
TLC27L2CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	P27L2	Samples
TLC27L2ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2I	Samples
TLC27L2IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2I	Samples
TLC27L2IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2I	Samples
TLC27L2IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L2I	Samples
TLC27L2IP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	TLC27L2IP	Samples
TLC27L2IPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y27L2	Samples
TLC27L2IPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	NIPDAU E E C T	Level-1-260C-UNLIM	-40 to 85	Y27L2I	Samples
TLC27L2MD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	27L2M	Samples
TLC27L2MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM		27L2M	Samples
TLC27L2MDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	27L2M	Samples
TLC27L7CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L7C	Samples
TLC27L7CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	27L7C	Samples

PACKAGE OPTION ADDENDUM

6-Feb-2020

Orderable Device	Status	Package Type			_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC27L7CP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	TLC27L7CP	Samples
TLC27L7CPSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	P27L7	Samples
TLC27L7ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L7I	Samples
TLC27L7IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L7I	Samples
TLC27L7IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L7I	Samples
TLC27L7IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	27L7I	Samples
TLC27L7IP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	TLC27L7IP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

ww.ti.com 6-Feb-2020

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

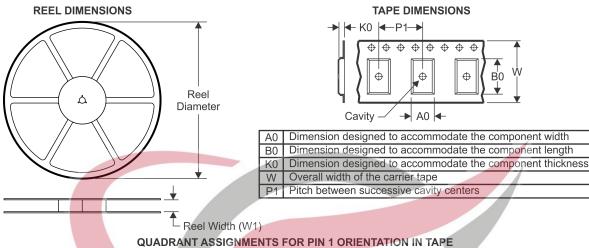
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

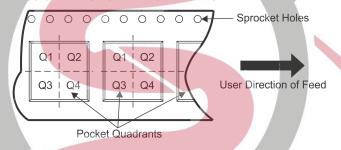
OTHER QUALIFIED VERSIONS OF TLC27L2, TLC27L2M:

Catalog: TLC27L2

Military: TLC27L2M

NOTE: Qualified Version Definitions:

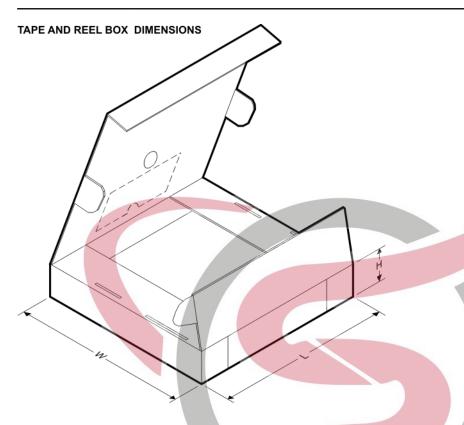

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications



PACKAGE MATERIALS INFORMATION

26-Feb-2019 www.ti.com

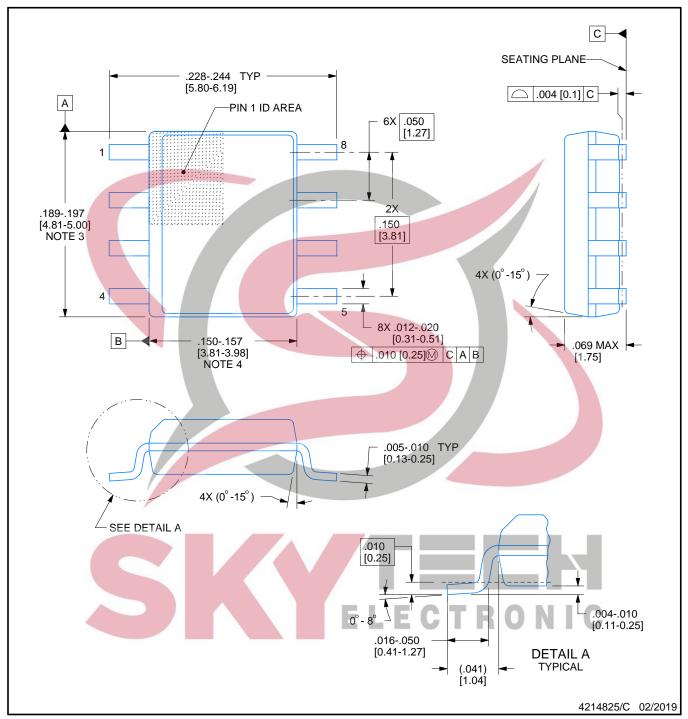
TAPE AND REEL INFORMATION



*All dimensions are nominal

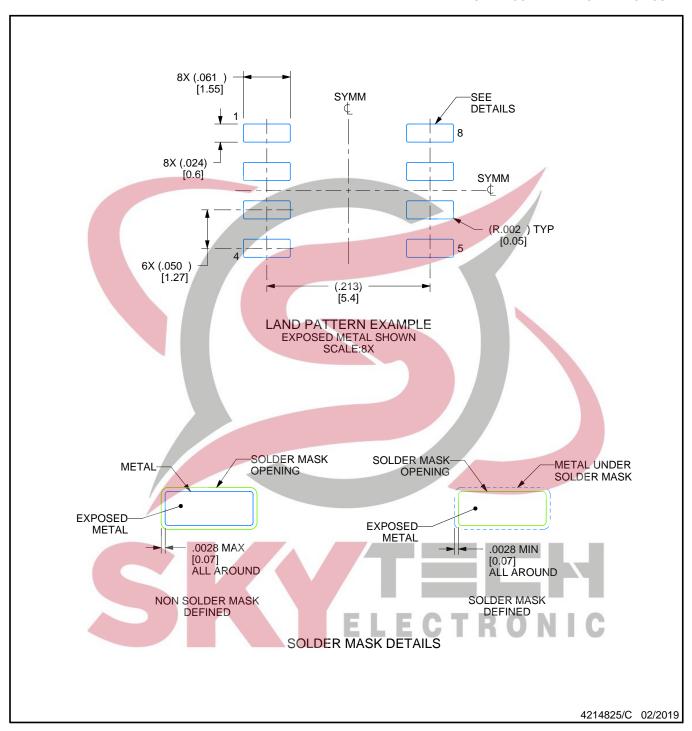
Device	Package	Package	Pins	SPQ	Reel	Reel	A0	В0	K0	P1	w	Pin1
Devide	Туре	Drawing		5. 4	Diameter (mm)	Width W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
TLC27L2ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2CPSR	so	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC27L2CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC27L2IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L2IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC27L2MDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L7CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC27L7CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC27L7IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 26-Feb-2019



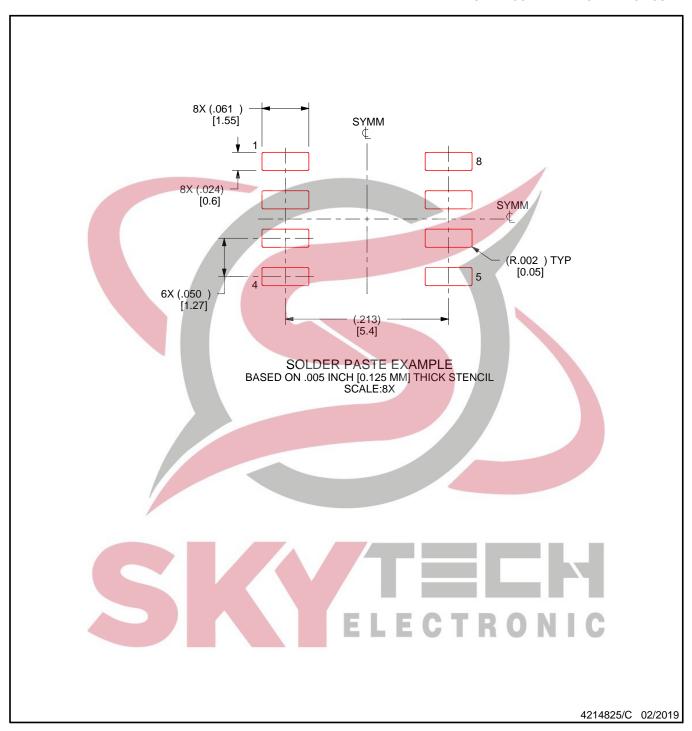
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC27L2ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2BIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC27L2CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC27L2IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L2IPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC27L2MDRG4	SOIC	D	8	2500	350.0	350.0	43.0
TLC27L7CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC27L7CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC27L7IDR	SOIC	D	8	2500	340.5	338.1	20.6


SMALL OUTLINE INTEGRATED CIRCUIT

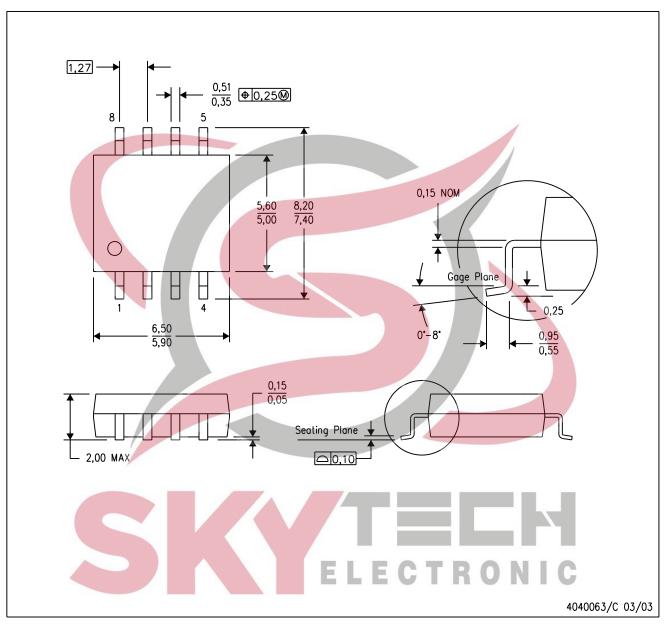
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

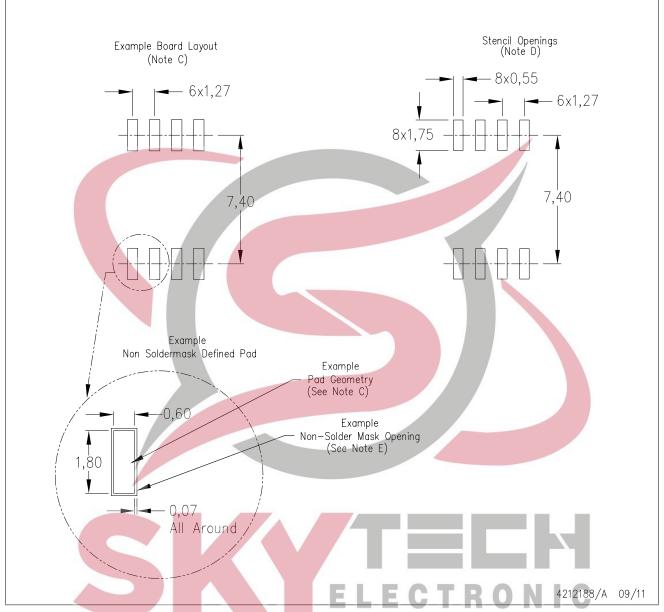
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

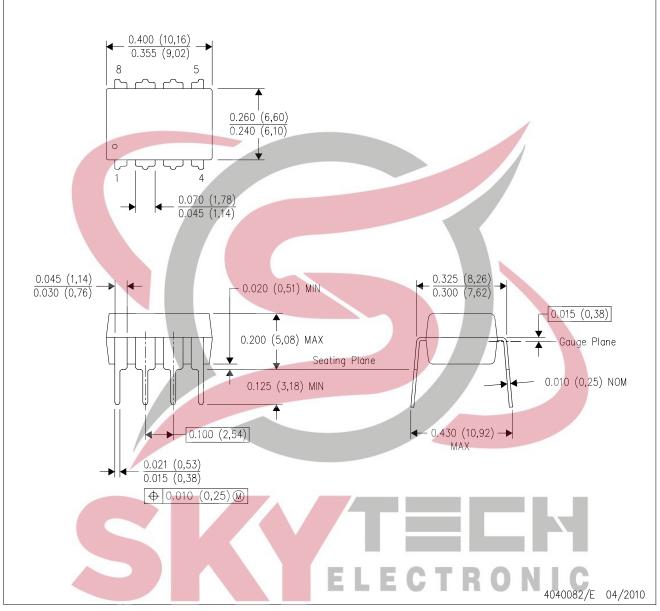
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

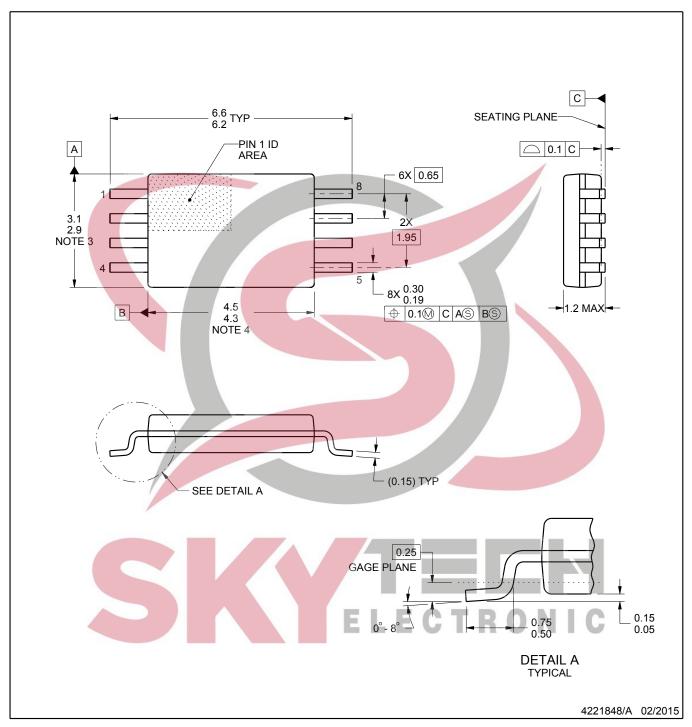
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

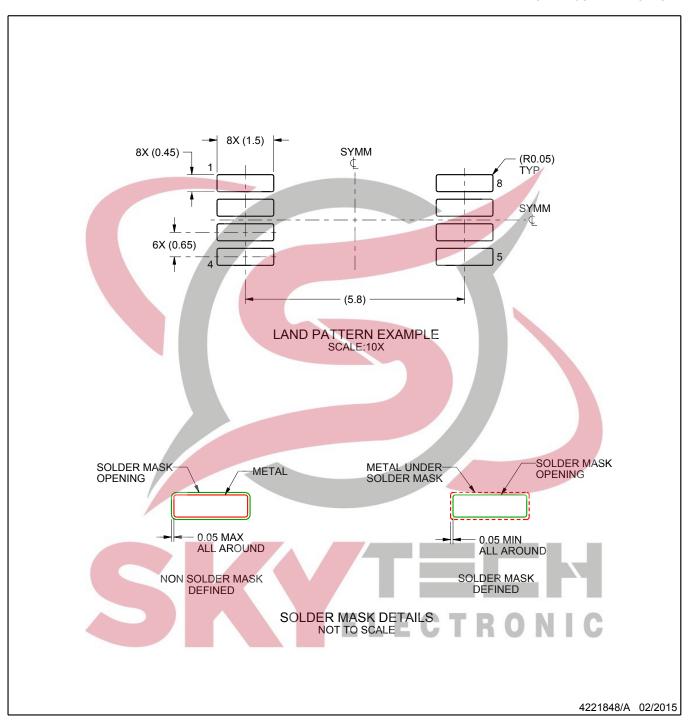
P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

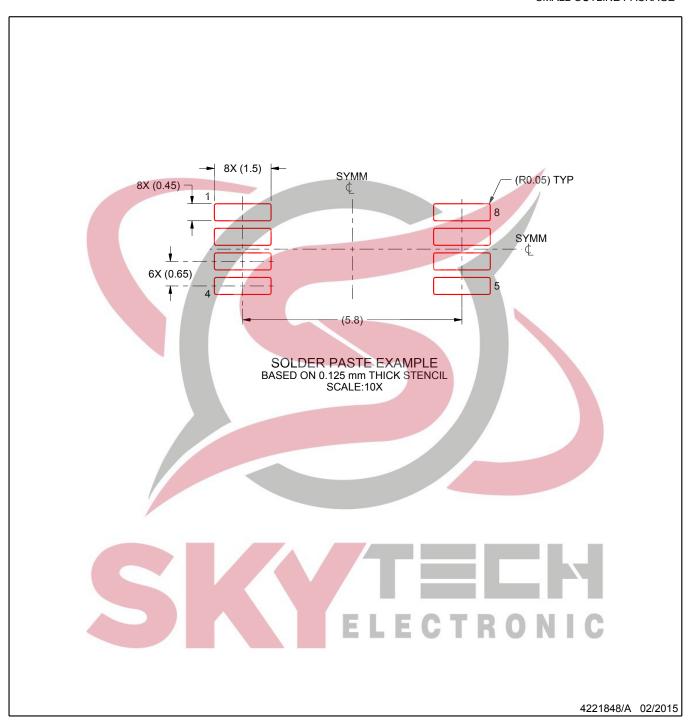
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated

